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A young child eagerly awaits the day when she will pass the 100 cm minimum height

requirement for riding on the "thriller" roller coaster at her local amusement park. She regularly

measures her height on the large-scale ruler tacked to her closet door.  As summer approaches,

she asks her parents to measure her every week.   A few weeks ago she measured 98 cm, last

week 99.5 cm, but today only 99.0 cm.  Disappointed and confused, when she gets to school she

asks the school nurse to measure her, and is delighted to discover that her height is 100.1 cm.

Success at last!   But as she anticipates the upcoming annual class excursion to the amusement

park, she begins to wonder: what is her real height?  And more importantly, what will the

measurement at the entrance to the roller coaster reveal?  Why are all the measurements

different, rather than the same?  Because she is a really thoughtful child, she begins to speculate

about whether the differences are in the thing being measured (i.e., maybe her height really

doesn’t increase monotonically from day to day) or the way it was measured (different people

may use different techniques and measurement instruments when determining her height).

 As this hypothetical scenario suggests, children often have to make decisions about data,

not only in formal science classroom contexts, but also in everyday life.  However, data vary.

Data are imperfect both in the “real world” and in science classrooms.  Learning when that

variation matters and when it does not – separating the signal from the noise – is a difficult task

no matter what the context. Children have two disadvantages in interpreting data.  First, they
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disciplines, strongly-held hypotheses require a lot of disconfirming evidence before they are

revised, while those with less theoretical grounding are more easily revised so as to be consistent

with the latest empirical findings.

But how does a child determine when such variation matters? As discussed above,

knowledge guides interpretations of data yet data also guide the evaluation and creation of

knowledge. There seem to be (at least) two plausible developmental explanations: knowledge

precedes data or data precede knowledge. Although these characterizations are slightly

exaggerated, it is useful to examine the implications of each. It is possible that children only

begin to attend to data when they detect inconsistencies with their existing knowledge. For

example, the child in our opening scenario who holds the belief  that growth is a monotonic

function -- and that therefore  her height will always increase -- will use that “theory” to interpret

any  measurement indicating  a “loss” of height, as inconsistent with the current theory.  This

anomaly may motivate a more careful and skeptical analysis of the discrepant measurement. She

might look for and evaluate a series of possible explanations that account for the unexpected

data. (Chinn & Brewer, 2001)  Thus, through the detection of theoretical inconsistencies,

children might begin to attend to data and these data in turn, provide information on the type and

extent of knowledge change that is necessary.

 Conversely, it is also possible that knowledge is the result of data accumulation. Perhaps
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A correct test involves setting up two ramps with identical settings on every level except surface,

running the test, and then measuring and interpreting the results.

We distinguish five stages in the experimentation process: design (choosing variables to

test), set-up (physically preparing the experiment), execution (running the experiment), outcome

measurement (assessing the outcome), and analysis (drawing conclusions).  Each stage is directly

associated with a different category of error.

Design error

 Decisions about which factors to vary and which to control are made in the design stage. These

decisions are based on both domain-general knowledge, such as how to set up an unconfounded

experiment, and domain-specific knowledge, such as which variables are likely to have an effect

and therefore should be controlled.  Domain-specific knowledge is used to form the operational

definitions of the experiment’s independent and dependent variables.

Design error occurs in this stage of an experiment when some important causal variables not

being tested are not controlled, resulting in a confounded experiment. Design errors occur "in the

head" rather than "in the world," because they result from cognitive failures. These failures can

result from either a misunderstanding of the logic of unconfounded contrasts, or inadequate

domain knowledge (e.g., not considering steepness as relevant to the outcome of a ramps

comparison).

Measurement error

Measurement error can occur during either the set-up stage or the outcome measurement stage.

Error in the set-up stage is associated with the readings and settings involved in arranging the

apparatus and calibrating instruments, and error in the outcome measurement stage is associated

with operations and instruments used to assess the experimental outcomes.  Measurement always
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includes some error, producing values with some degree of inaccuracy. These inaccuracies can

affect either the independent or the dependent variables in the experiment.  Of the four types of

error, measurement error most closely corresponds to the conventional view of an error term that

is added to a true value of either the settings of the independent variables or the measurement of

the dependent variables.

Execution error

The execution stage covers the temporal interval during which the phenomenon of interest

occurs: in other words the time period when the experiment is “run.”  For example, in the ramps

experiment, this stage lasts from when the balls are set in motion until they come to rest.

Execution error occurs in this stage when something in the experimental execution influences the

outcome.  Execution error can be random (such that replications can average out its effects) or

biased (such that the direction of influence is the same on repeated trials), and it may be obvious

(such as hitting the side of the ramp) or unobserved (such as an imperfection in the ball).

Interpretation error

Although interpretation occurs during the final stage – analysis – interpretation error can be a

consequence of errors occurring in earlier stages and propagated forward.  That is, undetected

errors in any stage of the experiment can lead to an interpretation error.  For example, not

noticing the ball hitting the side of the ramp as it rolls down might lead one to be more confident

than warranted in drawing conclusions about the effect of the ramp design.

Even if there are no earlier errors of any importance, interpretation errors may occur in this

final stage as conclusions are drawn based on the experimental outcome and prior knowledge.

Interpretation errors may result from flawed reasoning strategies, including inadequate

understanding of how to interpret various patterns of covariation (Amsel & Brock, 1996; Shaklee
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presented with a choice between a conclusive and an inconclusive experimental test, can make

the correct choice, although they cannot yet design such a conclusive test.  Similarly we would

expect that children might be able to recognize error-based explanations as plausible even if they

are unable to generate execution or measurement error-related reasons for data variability.

Varelas (1997) examined third and fourth graders’ reasoning about errors in the execution
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One of our initial goals was to explore what children understand about different types of

error in an experimental context.  We presented elementary school children with a situation in

which they had to work through each phase of an experiment: we asked them to design, execute,

measure and interpret results from an experiment.  At each of these stages, there was the

possibility of error both in the particular phase and in the possible interpretations of the outcome

(Masnick & Klahr, 2003).

We used the domain of ramps because it is a familiar domain and one that yields data with

consistent main effects but some variation.   We presented 29 second and 20 fourth graders

(average ages 8 and 10) with the opportunity to design several experiments with ramps to

determine the effects of the height and surface of the ramp on the distance a ball travels.

Children were asked to make predictions, justify their designs and predictions, and run the

experiment.  They were then asked to draw conclusions from the results and to speculate on what

the outcome would be if the experiment were to be rerun with no changes in the setup.  They

were asked to assess how sure they were of their conclusions on a four-point scale (totally sure,

pretty sure, kind of sure, not so sure).  They were also asked to generate possible reasons for

variation in datasets and to reason about the effect of different factors on hypothetical outcomes.

Results

When children designed comparisons to test target variables, most trials included a number

of errors in each phase of their experiments, some avoidable, others not.  Children recognized

some but not all of these errors and had difficulty linking their conclusions with the empirical

data.  In the design phase, children often made design errors, by failing to set up unconfounded

experiments (16% of the second graders’ designs were unconfounded; 40% of the fourth graders’

were).  However, their justifications for their designs and their outcome predictions were
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associated with the accuracy of their design.  In other words, participants who designed

confounded experiments were likely to expect all the variables they did contrast to affect the

outcome, even when that was not the stated goal of the comparison.  Similarly, those children

who did not vary the target variable were much less likely to cite differences in the target

variable as a justification for the expected outcome.  This finding suggests an understanding of

the causal link between the design and outcome, even when this link was not clearly articulated.

In measuring the distance a ball traveled, the likelihood of measurement error was small due

to the constrained nature of measurement in this task: the distance balls rolled was measured

discretely by noting the numbered step on which the ball landed.  However, nearly all of the

participants were able to name sources of measurement error when asked to explain variation in
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All of the data sets varied slightly: there were no two measurements given to participants

that were identical within the set of trials for each given variable.  However, because string

length was the only variable that caused a true effect, the difference in the readings from the

trials with a short string and those with a long string were much more pronounced. The data from

these two sets of trials did not overlap.  Figure 1 shows the box-plots for the data that were

presented to each participant. (Note that the participants received the data one data point at a

time, after timing each round of swings.  The data were recorded in a column format, on a

preprinted handout provided by the experimenter.)

As noted above, each participant experimented with the effects of length, weight, and height.

Because we wanted examine participants’ ability to “calibrate” high vs. low variability in this

context, we presented the length variation as the first factor to be explored for one half of the

participants, and as the last factor to be explored for the other half.

Results

Both adults and children learned from running the experiments, and there was no effect of

whether the length variable was presented first or last.  Figure 2 shows several very clear

patterns: (a) With respect to initial knowledge,  both adults and children tended to believe

(correctly) that length matters, and (incorrectly) that weight and height also matter. (b) Both

adults and children learned from pre-test to test phase about all three variables.  (c) Adults not

only knew more about all three factors than did children at pre-test but also improved their

knowledge more than children after seeing the data.  In other words, by the end of the test phase,

and through the post-test phase, most adults had revised their faulty beliefs about the effect of

height and weight on the period of a pendulum.  In contrast, children’s gains, although

statistically significant, remained at very low levels.    These differences cannot be attributed to
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how children evaluate the data itself. That is, how do children decide when evidence is

compelling or uncompelling? Once these characteristics of data are identified, we can examine

the extent to which specific characteristics of data are related to theoretical change.  To examine

this issue, a different approach was used in which data were presented with little theoretical

guidance so that the conclusions drawn would be predominantly data-driven rather than theory-

driven.  In this study, we examined children’s reasoning in the interpretation phase of an

experiment: data were presented as results of a completed experiment, and participants were

asked to draw conclusions based on the information they had available.  We set up situations

with minimal theoretical background information, to make the variation in data characteristics

particularly salient.

Two of the most important ideas about data involve expectations about sample size and

expectations about variation in data distribution , and we used these variables as the focal

variables in our study. We asked participants to draw conclusions about whether there was a

difference between two sets of data and to explain their reasoning (Masnick & Morris, 2002).

Thirty nine third graders, forty-four sixth graders, and fifty college undergraduates were

presented with a cover story, and then were asked to reason about potential differences between

two sets of data.   Half of the participants read the following cover story about engineers who are

testing new sports equipment, using robot launchers to repeatedly test different sports balls, such

as tennis balls and golf balls.  The other participants read an isomorphic cover story about a

coach trying out two athletes vying for one slot on her team.

Some engineers are testing new sports equipment.  Right now, they are looking at the

quality of different sports balls, like tennis balls, golf balls and baseballs.  For example,

when they want to find out about golf balls, they use a special robot launcher to test
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two balls from the same factory. They use a robot launcher because they can program

the robot to launch the ball with the same amount of force each time. Sometimes they

test the balls more than once.  After they run the tests, they look at the results to see

what they can learn.

After reading the cover story, participants were shown a series of datasets, one at a time.

For each example, there were data for either two different balls of the same type, which were not

given any distinguishing characteristics (e.g., “Baseball A” and “Baseball B”) or for two athletes
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Participants were also asked for justifications for their reasoning about why they felt they

could be sure of conclusions.  Coding of data-based reasons involved noting whether participants

mentioned a trend in the data (“5 out of 6 times A went farther”); sample size (“It’s only two

times so it’s hard to tell”); no overlap (“A always went farther than B”), variability within the

column (“the numbers were really far apart in A,” and magnitude of differences (“A went a lot

farther than B”)).  There were large grade differences in the frequency of using each of the

descriptions.  See Table 3.  However, all but one participant (a third grader) made at least one

explicit reference to data characteristics such as a pattern in the data or the magnitude of

differences.    This finding indicates that even as early as third grade, children are paying

attention to some characteristics of data, and using this information in guiding their conclusions.

Insert Table 3 about here

Additionally, reasons were also coded to take note of whether they included a mechanistic

explanation for the outcome.  These responses were classified as a reason based on a property of

the ball (“Ball A was more aerodynamic”), of the robot or athlete (“Maybe the robot was

breaking down when it threw Ball B”; “Bill was getting tired”), or of the environment (“Maybe

there was wind when Ball A was thrown”).  Mentioning the property of the robot or athlete was

the only factor we found that did vary considerably by condition, with nearly all mentions in the

athlete condition (i.e., participants sometimes said that a property of athlete was a reason for the

outcome, but very rarely attributed it a property of the robot.)  However, there were no grade

differences in frequency of providing a mechanistic explanation, with an average of 50% of

participants providing at least one mechanistic explanation.  In their interpretations, a sizeable

number of participants were using prior background knowledge to explain the data.

Discussion
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Table 2: Examples of datasets shown to participants

Example 1: Six data pairs, no overlapping data points, robot condition

Golf Ball A Golf Ball B
466 feet 447 feet
449 feet 429 feet
452 feet 430 feet
465 feet 446 feet
456 feet 437 feet
448 feet 433 feet

Example 2: Four data pairs, one overlapping pair (3 out of four times Carla throws farther),
athlete condition

Carla Diana
51 feet 38 feet
63 feet 50 feet
43 feet 56 feet
57 feet 44 feet
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Table 3  Percentage of participants at each grade level who gave each data-based explanation at

least one time.

3rd grade 6th grade Undergraduate

Trend 90 84 100

Sample size 10 27 96

Overlap 56 61 72

Variability 0 7 28

Magnitude of

difference

36 80 90
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Figure captions

Figure 1.  Summary of data presented to participants, showing distinct separation between times

associated with long vs. short strings, and complete overlap for times associated with heavy/light

weights and high/low starting positions.  (Y-axis shows seconds to complete 10 swings; box

plots are based on four data points for each sub-plot.)

Figure 2  The percent of participants in each age group who believed each variable made a
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